A Compressed Sensing-Based Low-Density Parity-Check Real-Number Code

نویسندگان

  • Zaixing HE
  • Takahiro OGAWA
  • Miki HASEYAMA
  • Xinyue ZHAO
  • Shuyou ZHANG
چکیده

In this paper, we propose a novel low-density parity-check real-number code, based on compressed sensing. A real-valued message is encoded by a coding matrix (with more rows than columns) and transmitted over an erroneous channel, where sparse errors (impulsive noise) corrupt the codeword. In the decoding procedure, we apply a structured sparse (low-density) parity-check matrix, the Permuted Block Diagonal matrix, to the corrupted output, and the errors can be corrected by solving a compressed sensing problem. A compressed sensing algorithm, Cross Low-dimensional Pursuit, is used to decode the code by solving this compressed sensing problem. The proposed code has high error correction performance and decoding efficiency. The comparative experimental results demonstrate both advantages of our code. We also apply our code to cryptography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Sensing Reconstruction via Belief Propagation

Compressed sensing is an emerging field that enables to reconstruct sparse or compressible signals from a small number of linear projections. We describe a specific measurement scheme using an LDPC-like measurement matrix, which is a real-valued analogue to LDPC techniques over a finite alphabet. We then describe the reconstruction details for mixture Gaussian signals. The technique can be exte...

متن کامل

Adaptive Compressed Sensing Using Sparse Measurement Matrices

Compressed sensing methods using sparse measurement matrices and iterative message-passing recovery procedures are recently investigated due to their low computational complexity and excellent performance. The design and analysis of this class of methods is inspired by a large volume of work on sparsegraph codes such as Low-Density Parity-Check (LDPC) codes and the iterative Belief-Propagation ...

متن کامل

Sparks and Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

For a measurement matrix in compressed sensing, its spark (or the smallest number of columns that are linearly dependent) is an important performance parameter. The matrix with spark greater than 2k guarantees the exact recovery of ksparse signals under an l0-optimization, and the one with large spark may perform well under approximate algorithms of the l0-optimization. Recently, Dimakis, Smara...

متن کامل

Joint Channel Coding based on LDPC Codes with Gaussian Kernel Reflecton and CS Redundancy

This paper proposes a new joint decoding algorithm frame based on compressed sensing CS and LDPC (Low-Density Parity-Check) codes. Redundant information can be effectively extracted and amplified by CS reconstruction as a compensation to correct decoding of LDPC codes. We adopt Gaussian kernel function of image segmentation as a reflection. Simulation results indicate, compared with LDPC algori...

متن کامل

New Generalizations of the Bethe Approximation via Asymptotic Expansion

The Bethe approximation, discovered in statistical physics, gives an efficient algorithm called belief propagation (BP) for approximating a partition function. BP empirically gives an accurate approximation for many problems, e.g., low-density parity-check codes, compressed sensing, etc. Recently, Vontobel gives a novel characterization of the Bethe approximation using graph cover. In this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013